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An analysis is made of the s t ruc ture  of the profile of a slow shock magnetohydrodynamic 
wave of a rb i t r a ry  intensity in a nonviscous medium. It is shown that the condition for the 
formation of a discontinuous profi le coincides with the condition for the creat ion of an i so-  
thermal  discontinuity in conventional gas dynamics.  

1. The sys tem of equations describing the s teady-s ta te  profi le of a plane shock wave in a f rame of 
re fe rence  in which the wave is quiescent has the form 

du~ 
a~a~k (u) ~ = Bi (u) (i = t . . . . .  m) (1.1) 

k = l  

B~ (u)  = 0 (i = ,~ + l . . . . . . .  ) 
(1.2) 

Here u = {u} ~ is a set  of pa r ame te r s  describing the state of the medium; ~ik(U) and Bi(u) are  known 
finite differential functions of their arguments ;  c~ k are  dissipative coefficients such that without loss of gen-  
era l i ty  we can substitute c~ k ~ 0 (k = 1 . . . . .  m), ~k = 0 (k = m + 1 . . . . .  n). The boundary conditions are  that 
when x -" �9 ~ the p a r a m e t e r s  Uk(X) tend to finite Values of Uk +. These values,  obviously, must  sat isfy the 
equations 

B~ (u  +-) = 0 (i = t . . . . . . .  n) 

Solving Eq. (1.1) with r e spec t  to the derivat ives,  we obtain 

du~ [ Dk l 
a k  ~ = j a ~  J (k, i = i . . . .  ra) ( 1 . 3 )  

Equation (1.1) descr ibes  the actual dissipative p rocesses  in the shock wave, and therefore  the de te r -  
minant ~aikl cannot vanish in the interval (u-, u+), i.e., the derivatives duk/dX (k = 1, . . . .  m) are  always 
finite and the p a r a m e t e r s  themselves  Uk(X) (k = 1, . . . .  m) are  continuous. 

Differentiating Eqs. (1.2) with r e spec t  to x and solving them relat ive to the derivatives of the r e -  
maining n - m  pa rame te r s ,  we obtain 

0 B  i (u) 
d % _  ]Dk*]  b ~ k = ~  ( i , k = m ~ - I  . . . . .  n) (1.4) 
dz I bikl ' ou~ 
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Here t D~<I is a determinant  consisting of elements of the matr ix (bik) in which the k-column is r e -  
placed by a column of functions Ci(u) 

duj 
C~ (u) = -- b~j d~ (~ = ,n -§ t . . . . .  ~) (1.5) 

j = l  

The solution of sys tem (1.1) and (1.2) [or sys tem (1.3) and (1.4)] connecting the boundary singular 
points u-  and u + exists ,  a t l e a s t  in the case of fast  and slow shock waves,  uniquely [1]. Moreover ,  if in the 
interval (u-, u +) the determinant  I bikl does not vanish, all the functions UkiX) also are  continuous [2]. 

Vanishing of the determinant  I bikl in the interval (u-, u +) corresponds to transi t ion within the wave 
profi le through the phase velocity of a higher sys tem [ideal sys tem,  obtained f rom Eqs. (1.1) and (1.2) by 
r eve r s ion  of the dissipative coefficients c~k to infinity] [2, 3]. 

It can be s e e n f r o m  Eq. (1.4) thatwith transi t ion through an n-dimensional  surface t bikl = 0 in (n+ 1)- 
dimensional space of the quantities x, u 1 . . . . .  u n, the derivatives duk/dx (k = m+ 1 . . . . .  n) change sign, 
passing through infinity, which corresponds either to an unlimited increase  or ambiguity of the n - m  func- 
tions of Uk(X) (k = m+ 1 . . . . .  n) and confirms the absence of a continuous solution with r e spec t  to x. 

The singular points u c constitute an exception, in which simultaneously with the determinant  tbik I all 
determinants  I D~ ] vanish, which, as can be seen easi ly,  occurs  when the condition 

Cm+l~,,~+* + C,,+~,,,,+~ + �9 .. + C,~,,, = 0 

is sat isf ied,  where k i is the root  of the homogeneous sys tem 

b~+l, ~,,~+1 ~- b,~+2, ~m+~ ~- �9 �9 �9 + b~kk~ = 0 ( k = m @ t  . . . . .  n)  

Thus, the profi le  of the shock wave contains discontinuities if, in the case of t ransi t ion through the 
phase velocity of a higher sys tem (in the future, for brevi ty we shall call it cri t ical) ,  the sys tem of equations 
(1.1) and (1.2) do not contain singular points in the interval  (u-, u +) (for example [3], when m : 1), or a sin-  
gular  point exists but the solution does not pass  through it [4]. If, further ,  in the case of t ransi t ion through 
the cr i t ical  velocity the solution passes  through a singular point, then the question of discontinuity of the 
solution must be considered separately:  in this case,  the solution can be both continuous (as we shall show 
later) and noncontinuous. 

2. Let  us consider  aplane shock magnetohydrodynamic wave in an ideal gas. In magnetohydrodynamic 
approximation the sys tem of equations describing the profi le  of the s ta t ionary shock wave has the form [6] 

c~ dH: 
4n~ dx - -  vnH.t  - -  v~:Hrt - -  CI  (Hn = c ons t )  (2.1) 

dye= H 

(~_b 4 @ d r  H2 (t==_--~-) ._g- --g~x=jvn-l-p-4--Wff---C3, p-~tp 

v~ tQ H~ H2 dt V i t - -  ] + 

Her e Hr, vz and Hn, Vn a re  the components of the magnetic field tangential and nor  real to the wave front 
and the flow veloci ty of the gas; p, p and t a re  the p r e s s u r e ,  density, and internal energy of 1 g of gas; ~) and 

are  the f i rs t  and second viscosi ty;  a and n are  the e lect r ical  and thermal  conductivities of the gas; Cl, C2, 
C 3, and C 4 are  constants determined f rom the boundary conditions. 

It is easy,  by means of simple calculations,  to ver i fy  that the cr i t ical  velocity, t ransi t ion through 
which is possible within the profile of the evolutionary magnetohydrodynamic shock wave, exists only in the 
case  when dissipation due to the v iscos i ty  of the medium can be neglected. When ~ = ~ = 0, sys tem (2.1) r e -  
duces to a sys tem of two differential equations [2, 4] 

dh du h) 
I32V ~(u, h), 1(~, = 7~ -~- = r (u, h) (2.2) 

168 



Here ,  

v (z) -- v.- H~ (z) - -H , -  c~ x~(7 -- 1) 
u ~ _ h -  H~- ~ = 4mvn - - - - -=-  , X -  t ' ~  Yn ~ 

q) (u, h) = u + (1 - -  A~ -2) h + uh 

, ( u , h ) =  i ( + )  t j  --  1 --  2u " A, -~ 1 =- h ~ (vn_)~ 

] (u, h) = ( M -2 - -  l ) u - -  A, -2h - -  1/~ (y _}_ t) u" --  1.%A~-2 

. A-2)] h~__7"A:-'uh(t_ -{_ + )  + -~- A-Z( l  + u) 
# 

x [A.-*-}- T(t 

t '  
•  X h %_). r (u, h) 

(2.3) 

M is the Mach num be r ,  A n is the n o r m a l ,  and A the tangent ia l  Alfven n u m b e r  in the und is tu rbed  m e d i -  
um ahead  of  the wave.  Fo r  slow shock  waves  A n < 1. 

The l imi t ing  s ingu la r  points  O ( u -  = 0, h -  = 0) and A (u +, h ~) a r e  d e t e r m i n e d  f r o m  the equat ions  go(u, h) = 
0 a n d f  (u, 11) = 0. When the inequal i t ies  

~)(0) ~ 0  (~,M~ > t), $ ( A ) > 0  (2.4) 

a r e  sa t i s f ied ,  this  c o r r e s p o n d s  to t r ans i t i on  th rough  the c r i t i c a l  ve loc i ty  (in this ca se ,  the i s o t h e r m a l  v e l o c -  
ity of  sound).  

In this ca se ,  the l imi t ing  s ingu la r  points  O and A will  be saddle  po in t s .  The in tegra l  cu rve  [5] l eaves  
the point  O in the d i r ec t ion  z 2 (O) and en t e r s  at  the point  A in the d i r ec t ion  z 1 (A) ( l imi t ing case  )///3 << 1) 

z~(O) = x , (0) ~ j  (0) ( z ~ )  
/~' (o) + 0 y > 0 (2.5) 

]u'(A) ~ - ~ ( A )  ]~ (A)qa ( A ) - - / h  ( )r  (A) (~)X~ 
z 1 (A)  = /h' (A) ~- ]u" (A) fh' (A) + 0 > 0 

In sa t i s fy ing  the condi t ions  of  Eq.  (2.4), s y s t e m  (2.2) sti l l  has one s ingu la r  point  C(u c, hC), the c o o r -  
d inates  of which a r e  d e t e r m i n e d  f r o m  the equat ions  

r (u, h) = 0, / (u, h) = 0 

The point  C r e p r e s e n t s  a node with c h a r a c t e r i s t i c  d i r ec t ions  

(c) 1..' (c) , ;  (c) - 1, '  (c) , . . .  ( o  
Zl(C) = id(c ) k ~-  ~(C) ] j (c) fd(c) + o  > o  

,,(C)= z ~(c)r (~_) / j  ( 0  -F o ~ o (2.6) 

SO tha t  in the d i r ec t ion  z2(C) t h e r e  will  be a unique in tegra l  cu rve  at  the node,  which in the fu ture  we shal l  
cal l  the s e p a r a t r i x  of  the node.  

3. We shal l  cons ide r  in advance  the s i m p l e r  ca se  of a n o n t h e r m a l l y  conduct ing  med ium.  The s y s t e m  
of equat ions  de sc r ib ing  the p rof i l e  of a shock  wave  in this ca se  has the f o r m  

dh ~ Z = ~ ( u , h ) ,  /0(u, h)=0 (3.1) 

A c c o r d i n g  to Sect ion 1 this s y s t e m  does not contain a s ingu la r  point  within the in terva l  (OA), and on 
t r ans i t i on  th rough  the c r i t i ca l  ve loc i ty  {f~u (u, h) = 0), which in this case  is the ve loc i ty  of sound,  all the p a -  
r a m e t e r s  of the medium with the except ion  of the magne t ic  field undergo  a d iscont inui ty .  Actua l ly ,  the func-  
t ions  u(x) a r e  the solut ion of the s y s t e m  of equat ions  

du fob' (u, h) 
~-x = --7~ (u, h) /0~' (u, h)' /0 (u, h) = 0 
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eo~.,hJ=O I h / 

C " ll~ 

b z~(m ~ _ ~ _  

/Y I / 

~ ( A )  ~ ~ [u'h]=O 
z , (A) 

Fig. 1 

which can be seen easi ly when M > 1 contains the nonphys- 
ical pa r t  du/dx > 0 (rarefact ion wave). Hence, it follows 
immediately that as 

~= ~ for M~.>t du 

the velocity profile of a supersonic slow shock wave begins 
with a discontinuity, the magnitude of which is determined 
from the condition 

io (u, 0) = 0 (3.2) 

Confirmation of the validity of the conclus ion drawn 
can be obtained f rom expression (2.5), the f i r s t  par t  of 
which tends to zero  when • 0, which affects the existence 
of the pa r t  of the wave in which a velocity discontinuity 
occurs  without change of magnetic field. 

It is not difficult to ver i fy  that Eq. (3.2) gives a value 
for the velocity discontinuity which coincides in accuracy  
with the discontinuity in a gas-dynamic  shock wave [7]. The 
same may be said also about the p re s su re ,  density, and 
tempera ture  discontinuities.  Thus, a slow supersonic shock 
magnetohydrodynamic wave in a nonviscous nonthermally 
conducting medium is initiated by a normal  gas-dynamic  
shock wave [1, 8]. 

4. Let us r e tu rn  to sys tem (2.2). By eliminating x, 
we reduced the sys tem of two equations to a single equa- 
tion re la t ive  to dh/du 

dh X ~(u, h)r h) (4.1) 
du = ~ f (u, h) 

The isoclines 

(2, h)=0,  , (2 ,  h ) = 0  

and also the known nature of both points (see Section 2) permi t  the path of the integral curves  h(u) [or u(h)] 
to be satisfiea qualitatively by this equation (see Fig. 1). 

The a r rows  going out f rom the curves f = 0, ~ = 0, and r = 0 in the figure indicate the region of positive 
values of the functions listed. The ar rows on the integral curves show the direction of motion of the point 
(u; h) along the integral  curve with increase of x [see Eq. (2~2)]. 

It is easy to see that the integral curve joining the points 0 and A necessa r i ly  passes  though point C 
and that its branch CA has only one common point with the curve r h) = 0. In order  to show the validity of 
the latter statement,  we construct  the curvef0(u ,  h) = 0 in the plane uh. Because the inequa l i tYf0h ' tu ' -  
f 0 u ' t  h '  > 0 is sat isfied at least  over the interval  OA, the slope of the integral  curves  at each point onf0(u,  h) = 
0 is less  than the slope of the tangent to th e curve f0(u, h) = 0 at the same point. 

On the other hand, on the i soc l ine f (u ,  h) = 0, the slope of the integral curves is always g rea te r  than 
the slope of the tangent to this isocline. Hence it follows that in the inverval CA the integral curve is d is -  
placed completely to a small  region bounded by the curves  f (u ,  h) = 0 and f0(u, h) =0. 

In this case,  the solution of Eq. (4.1) has the form [5] 
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h h 

h +  s 
(4.2) 

w h e r e  ut(h) is a con t inuous  func t ion  d e f i n e d  by the r e l a t i o n f ( u ,  h) II = 0, and 

F ( h )  ~ ]u'(ut(h), h) 
= y , (u t (h), h) q~ (~'t (h), ~) 

(4.3) 

We note  tha t  the  func t ion  F(h) r e v e r t s  to inf in i ty  a t  the  po in t s  h = h + and h = hC, and wi th in  the  i n t e r v a l  
(hC, h +) it  is n e g a t i v e ,  but the  d e r i v a t i v e  d t t f / d h  i n th i s  i n t e r v a l  is f in i t e  and p o s i t i v e .  T h e r e f o r e ,  the  i n t e g r a l  
in the  R.H.S.  of Eq.  (4.2) does  not  change  stgnJ" and v a n i s h e s  when h ~  h + and h ~ h c .  Hence  it fo l lows  tha t  
the  i n t e g r a l  c u r v e  on the s e c t i o n  CA cannot  have  any  o t h e r  c o m m o n  po in t  wi th  the  c u r v e  r  h) = 0 e x c e p t  
the  p o i n t  C, and l e a v e s  f r o m  p o i n t  C in the  d i r e c t i o n  z l (C) .  

Thus ,  the  q u e s t i o n  of d i s c o n t i n u i t y  of the s o l u t i o n  is d e t e r m i n e d  by the b e h a v i o r  of the  b r a n c h  of the  
i n t e g r a l  c u r v e  jo in ing  the  po in t s  O and C. H e r e ,  the  fo l lowing  c a s e s  a r e  p o s s i b l e :  the  i n t e g r a l  c u r v e  in-  
t e r s e c t s  the  i s o c l i n e  r  h) = 0 on ly  a t  the  p o i n t  C and e n t e r s  it in the  d i r e c t i o n  zl(C) (F ig .  l a ) ;  the  i n t e g r a l  
c u r v e  i n t e r s e c t s  the  i soc l i nc  r  h )=  0 only  at  po in t  C but e n t e r s  i t  i n t h e  d i r e c t i o n z 2 ( C  ) (F ig .  l b ) a n d ,  f i na l l y ,  
b e f o r e  r e a c h i n g  po in t  C the  i n t e g r a l  c u r v e  i n t e r s e c t s  the  i s o c l i n e  $(u,  h) = 0 a t  one f u r t h e r  po in t  (F ig .  l e ) .  

In the  f i r s t  c a s e  h(u) is a s m o o t h  con t inuous  func t ion ,  and a l l  p a r a m e t e r s  of the  m e d i u m  Uk(x )and the i r  
d e r i v a t i v e s  dUk(X)/dx a r e  con t inuous  func t ions  of x. 

In the  s e c o n d  c a s e  the  func t ion  h(u) has  a node a t  the  po in t  C and in th is  c a s e  a l l  the  Uk(X) a l s o  a r e  
cont inuous  but  a l l  the  d e r i v a t i v e s  d u k / d x  u n d e r g o  a d i s c o n t i n u i t y ,  wi th  the  e x c e p t i o n  of  the  d e r i v a t i v e s  of 
the m a g n e t i c  f i e ld  and t e m p e r a t u r e  (weak d i s c o n t i n u i t y ) .  

In the  t h i r d  c a s e ,  a s  can  be s e e n  f r o m  F ig .  l b ,  when p a s s i n g  t h rough  r  h) = 0 the  d i r e c t i o n  of mo t ion  
of the po in t  (u, h) a long the  i n t e g r a l  c u r v e ,  c o r r e s p o n d i n g  to an  i n c r e a s e  of x, changes  to the  o p p o s i t e  d i r e c -  
t ion .  The l ine  ~(u, h) = 0 is s i n g u l a r  in the  s e n s e  tha t  f r o m  po in t s  of t h i s  l ine  l o c a t e d  above  p o i n t  C the  
i n t e g r a l  c u r v e s  d i v e r g e  and a t  p o i n t s  l o c a t e d  be low C they  c o n v e r g e  f r o m  the ad jo in ing  r e g i o n s .  C o n s e q u e n t -  
l y ,  con t inuous  p a s s a g e  of po in t  O to p o i n t  C wi th  a mono ton ic  i n c r e a s e  of x is i m p o s s i b l e .  In o t h e r  w o r d s ,  
i n s ide  the  shock  l a y e r  a l l  the  d e r i v a t i v e s  d u k / d x  and a l s o  the  funct ion  Uk(X ) u n d e r g o  d i s c o n t i n u i t y  wi th  the  
e x c e p t i o n  of the  m a g n e t i c  f i e l d  and the  t e m p e r a t u r e ,  which  r e m a i n  cont inuous  ( i s o t h c r m i c  i s o m a g n e t i c  d i s -  
con t inu i ty ) .  

As  shown in Sec t ion  3, in the  a b s e n c e  of t h e r m a l  conduc t ion  a s low shock  m a g n e t o h y d r o d y n a m i c  wave  
is s t a r t e d  by a c o n v e n t i o n a l  g a s - d y n a m i c  s h o c k  wave .  It is obv ious  tha t  wi th  a c o n d u c t i v i t y  tha t  is n o n z e r o  
but  n e g l i g i b l y  s m a l l ,  the cond i t i on  fo r  the  c r e a t i o n  of an  i s o t h e r m i c  d i s c o n t i n u i t y  wi th in  the  p r o f i l e  of a s low 
shock  wave  c o i n c i d e s  wi th  the  cond i t ion  for  the  c r e a t i o n  of an  i s o t h e r m i c  d i s c o n t i n u i t y  in c onve n t i on a l  g a s -  

d y n a m i c s  [7] 

3 T -  t 
M2 ~ "( (3 --  ~) (4.4) 

In the c a s e  of a f in i t e  t h e r m a l  conduc t i v i t y ,  the  e x p l a n a t i o n  of the  c r i t e r i o n  fo r  the  c r e a t i o n  of a d i s -  
con t inu i ty  in a n a l y t i c a l  f o r m  e n c o u n t e r s  c o n s i d e r a b l e  d i f f i c u l t i e s ;  th i s  c r i t e r i o n  was  e s t i m a t e d  by a n u m e r -  
i ca l  me thod .  

The  mos t  s a t i s f a c t o r y  me thod  of so lv i ng  th i s  p r o b l e m  was  found to be the d e t e r m i n a t i o n  of the  b e h a v i o r  
of the  s e p a r a t r i x  of the  node C n e a r  the  p o i n t  O. F i r s t  of a l l ,  the  s o l u t i o n  of Eq.  (4.1) fo r  the  s e p a r a t r i x  has  
s t a b i l i t y  in the  r e g i o n  - 1  < u <  0, - 1  < h < 0 ,  a s  th i s  is a unique c u r v e  l e a v i n g  the p o i n t  C in the  d i r e c t i o n z 2 ( C  ) 
and,  s e c o n d l y ,  con t inuous  s o l u t i o n s  can  be d i s t i n g u i s h e d  e a s i l y  f r o m  d i s c on t i nuous  s o l u t i o n s .  I n t e g r a t i o n  of 
Eq.  (4.1) w a s  u n d e r t a k e n  on a c o m p u t e r  by the s t a n d a r d  method ,  f r o m  po in t  C in the  d i r e c t i o n  of i n c r e a s i n g  
u up to i n t e r s e c t i o n  of the  s e p a r a t r i x  wi th  one of the  c o o r d i n a t e s  of the  a x i s ,  so  tha t  a r e l a t i v e  a c c u r a c y  a t  
the  l a s t  c o m p u t e d  po in t  of not  w o r s e  than  10 -5 was  g u a r a n t e e d .  

As  a r e s u l t  of the  c a l c u l a t i o n ,  it  was  found tha t  when 

3~" - -  1 
MZ ~ q" (3 -- ~-) -- O.Ol 
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independently of the concrete  values of the other s tar t ing pa ramete r s  varying over wide limits (0.2-< An-< 
0.95; 0 . 3 -  A 7 _< 5, X/fl 0.01, 0.1)the separat r ix  intersects  the axis h below the point O. 

In this case the integral curve leaving the point O, as is c lear  f rom Fig. la ,  cannot in tersect  the 
singular curve ~b(u, h) = 0 at any other point except the point  C which corresponds  to a continuous shock wave 
profi le.  

When 

3~ -- i 
M' > ~ + o.oi 

(also independently of the values of the other p a r a m e t e r s ,  see above) the separa t r ix  intersects  the axis u to 
the left of the point O. It can be seen f rom Fig, lb  that in this case the required  integral curve,before  r each -  
ing the node C , intersects  the curve ~D(u, h) = 0 at one fur ther  point, i.e., the shock wave profi le contains an 
isothermic discontinuity. Thus, within the permiss ib le  limits of the calculation car r ied  out, the condition 
for the creat ion of an isothermic is ,magnet ic  discontinuity inside the profi le of a slow shock magne t .hydro-  
dynamic wave coincides with the condition for the creat ion of an isothermic discontinuity in conventional 
gas-dynam ics. 

In conclusion, we note that a limiting case exists in which the profi le of a slow shock magnet ,  hydro-  
dynamic wave and, consequently,also the condition for the creation of a discontinuity can be found inanalytic 
form.  Actually, in the absence of a tangential component of the magnetic field (H T = 0) ahead of the wave, 
sys tem (2.2) acquires  the form 

dttr  
~ - -  ( i  - -  A j  ~ + u) H ,  

X ~ ---- -- I -- 2u -- g~p-=~ _)~ (M -~ -- i) u -- --5-- ~ + i u~ 

Hv~ 

(4.5) 

It is easy  to see that for satisfying the boundary conditions 

d H.~ du 
dx = - ~  = 0 (x = + ~ )  

a solution is possible only when ILr (x) - 0 and sys tem (4.5) reduces to one equation 

This equation descr ibes  the profi le of a normal  shock wave in a nonviscous gas. 

Hence. it follows direct ly that when H7 r = 0 a slow magnet ,  hydrodynamic wave can exist only as a 
normal  gas-dynamic  shock wave with the condition for the creat ion of an isothermal discontinuity Eq. (4.4). 

The authors thank G. Ya. Lyubarskii  for useful advice and discussions of the questions touched upon 
in this paper .  
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